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Abstract 
By accurately profiling the users via their 

unique attributes, it is possible to view the 
intrusion detection problem as a classification of 
authorized users and intruders. This paper 
demonstrates that artificial neural network (ANN) 
techniques can be used to solve this classification 
problem.  Furthermore, the paper compares the 
performance of three neural networks methods in 
classifying authorized users and intruders using 
synthetically generated data.  The three methods 
are the gradient descent back propagation (BP) 
with momentum, the conjugate gradient BP, and 
the quasi-Newton BP.  
 
 

I. Introduction 
 

Computer security issues are becoming 
headline grabbing items.  According to one report, 
computer systems on the Internet are being 
attacked hundreds of times – each day [1].  One 
way of preventing computer attack is to detect 
intruders and stop them from accessing the 
protected computer networks.   This paper focuses 
on intrusion detection and explores the potential of 
artificial neural networks as on-line, real-time tools 
for detecting intrusive activities.  Toward this goal, 
the objective is to construct a model that captures a 
set of user attributes and determine if that set of 
user attributes belongs to the authorized users or to 
that of intruders. 

 
The relevance of ANN's in intrusion detection 

becomes apparent when one views the intrusion 
detection problem as a pattern classification 
problem.  Using profiles of authorized computer 
users [2], one can train an ANN to recognize the 
authorized users in the incoming traffic, thus 
separating authorized traffic from intrusion traffic. 

  More importantly, many of the current 
intrusion detection techniques cannot detect new 
and novel attack patterns.  It is precisely in this 
area that the learning and generalization 
capabilities of ANN's can be exploited. 

 
The rest of the paper is organized as follows.  

Section II formulates the problem and gives an 
overview of the different neural network methods 
used in detecting the intruders.  Section III covers 
the generation of the test data sets.  Section IV 
summarizes the results and compares the 
performances of the various neural network 
methods.  Section V summarizes the research 
findings.  Section VI gives a brief conclusion of the 
research and points to new research areas.  The 
appendix lists the results. 
 
 

II. Problem Formulation and The 
Back Propagation Methods 

 
Mathematically speaking, the problem can be 

stated as follows.  Given a training data set S, the 
goal is to establish a mapping  f  from any given 
input vector  x  to an output class  d. 

( ){ } ,:, dpRiiyiS ∈= xx

 
Where x is the input vector, defining a user’s 
characteristic attributes and d is a scalar binary 
output to distinguish an authorized user from an 
intruder.  From a modeling perspective, the 
objective is to seek a model that provides the best 
fit to the given training data and the best prediction 
capability with future observed data (also known as 
test data set), while minimizing model complexity.  
The above objective is typically accomplished by 



building a model (i. e., the neural net, or 
equivalently, the mapping function  f ) and train it 
prior to using that model for intrusion detection.  
During the training phase, a performance index, 
defined in terms of the error, e, (e =  d – y) is 
minimized.  Where d is the desired output and y 
is the actual output.   
 

The back propagation method is a popular 
technique to train multi-layer feed-forward neural 
networks in a supervised manner.  This method is 
well known and details can be found in the 
published literature [3,4].  What follows is a brief 
synopsis of the methods and formulas used in this 
study.  In each of these methods, the term 
"training" refers to the systematic procedure used 
to adjust the "weights" in a weighted sum of inputs 
that is responsible for activating a neuron.   The 
sigmoidal activation [4] is used in this study.   
 
 In the gradient descent with momentum (GDM) 
[5,6], the new weight vector wk+1 is adjusted as: 

 
Where α is the learning rate, gk is the gradient of 
the error with respect to the weight vector, and  µ is 
the momentum constant which can be any number 
between 0 and 1. 
 
 In the conjugate gradient algorithms a search is 
performed along conjugate directions, which 
produces generally faster convergence than the 
steepest descent method.  In the conjugate gradient 
algorithms the step size is adjusted at each 
iteration.  A search is made along the conjugate 
gradient direction to determine the step size which 
will minimize the performance function along that 
line.  The version of conjugate gradient method 
used here is due to Polak and Ribiere (CGP)  [5,6].  
The search at each iteration is determined by 
updating the weight vector as:  

 
 

Newton’s method is an alternative to the 
conjugate gradient methods for fast optimization. 
Newton’s method often converges faster than 
conjugate gradient methods.  The weight update for 
the Newton’s method is: 
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Ak is the Hessian matrix of the performance index 
at the current values of the weights and biases.  
When Ak is large, it is complex and time 
consuming to compute wk+1.  Fortunately, there is a 
class of algorithms based on the works of Broyden, 
Fletcher, Goldfarb, and Shanno (BFGS) [4,7] that 
are based on Newton’s method but which don’t 
require intensive calculation. This new class of 
method is called quasi-Newton method.  The new 
weight wk+1 is computed as a function of the 
gradient and the current weight wk. 
 
 

III. Creation of Training and Test 
Data Sets 11 −
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Creation of training data is central to the 

success of any neural networks method.  One of the 
challenges is in creating intrusion scenarios.  
Earlier works have shown that computer users 
exhibited unique characteristics, and that computer 
users can be profiled accurately based on their 
attributes [2,8].  One way of collecting the data 
logs is to turn on the process accounting on UNIX 
operating system hosts and direct the output to a 
logfile.  Other ways of collecting data logs can be 
from applications such as TCPdump, Snort, Syslog, 
and Dragon IDS [9].  The information collected in 
these logfiles ranges from the command type, login 
host, login time, CPU and memory usage to TCP 
header information such as the interface, source 
and destination addresses and ports, sequence 
numbers, window size, etc. 
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α By turning on the UNIX OS process 
accounting, data logs were collected at the 
Computer Security Laboratory at the University of 
California, Davis.  From these data logs, computer 
users were profiled based on four attributes [2].  
These attributes were: (i) the command set used by 
the user, (ii) the login host, (iii) the time of login, 
and (iv) the time required to execute each of the 
commands entered (i.e. the CPU time).  Two data 
sets for training and testing the neural networks 
were created.  For simplicity in testing, these two 
data sets were created on the same host.  Each of 



these two data sets now has three attributes: 
command set, time of login and CPU time.  The 
characteristic of the data set and how they were 
used for testing are covered next. 

 
 

A. Characteristics of Data Set 
 

The objectives of creating data sets for training 
and testing were twofold.  First is to test the 
capability of the neural networks to classify data 

from authorized users and intruders that are 
linearly separated. Second is to test the 
performance in situations where the profiles of 
authorized users and intruders have some 
similarity.   Two data sets were created based on 
four features above.  In the first data set, the 
authorized users and intruders were separable from 
each other.  The features in the second data were 
selected to blur the distinction between the 
authorized users and intruders.  The characteristics 
of the two data sets are summarized in Table 1. 

 
 

 User Features Authorized Users Intruders 
 

Command Set 
{1,3,6,7,8,11,14,17,19,21,22,25, 26, 
28,29,31,33,37,38,41,43,44,46,47, 
49,50,51,54,55,59,61,70,72,76,78, 
79,81,84,85,87,91,92, 93,95,98,99} 

 
{1,..,100} 

Login Host 1 1 
Login Time 6:00  – 19:00 1:00 – 5:00; 20:00 – 24:00 

 
 
 

First 
Data 
Set 

CPU Time [µsec] {1,2,3,4,5,6,7,8} {50,60,70,80,90,100,200,300} 
 

Command Set 
{1,3,6,7,8,11,14,17,19,21, 22,25,26, 
28,29,31,33,37,38,41,43,44,46,47, 
49,50,51,54,55,59,61,70,72,76,78, 
79,81,84,85,87,91,92, 93,95,98,99} 

 
{1,..,100} 

Login Host 1 1 
Login Time 6:00 – 19:00 1:00 – 7:00; 18:00 – 24:00 

 
 
 

Second 
Data 
Set 

CPU Time 
[µsec] 

{1,2,3,4,5,6,7,8} {5,6,7,8,10,20,40,50,60,70, 
80,90,100,200, 300} 

Table 1: User Profile Characteristics of Generated Test Data 
 
 

B. Organization of Data Set 
 
The next step is to organize the data set into a 

suitable format for training and testing.  The 
generated data was organized into two parts.  The 
first part is for training.  Each training input sample 
came with a desired output.  Here, ninety percent 
(90%) of the input data was generated as 
authorized traffic and ten percent (10%) as 
intrusion traffic.  The second part is for testing the 
performance of the methods.  In this part, ninety 
eight percent (98%) of the traffic were generated to 
be authorized traffic and two percent (2%) of the 
traffic to be intrusion traffic.  In both parts of the 
training and test data section, several bursts of 
intrusion data are inserted into the authorized data 
stream.  Each of the generated input data file has 
7000 samples.  The first 5000 samples are the 
training data, and the next 2000 samples are the 
test data.  Authorized traffic is designated Class 
Positive and unauthorized traffic as Class Negative. 
Figure 1 illustrates the structure of the generated 
data files.  Here an input sample is defined as a unit 

of data being fed into the neural network at one 
time; one sample can consist of many command 
units (CUs).  A CU is defined as a set of four 
elements – the UNIX command, the login host, the 
time of login, and the execution time of the 
command (i.e. CPU time).   

training data
(5000 samples)

testing data
(2000 samples)

Figure 1: Construction of The Generated Data

Authorized
Data

Intrusion
Data

CU1 CU3CU2 ...

command       host        time     exe time



 
The objective is to test the neural networks for 

detecting intrusion traffic with the fewest number 
of CUs.  With that objective, three test files for the 
first data set and three test files for the second data 
set are generated.  These six files are identified as 
follows: File1a, File1b, File2a, File2b, File3a and 
File3b.  Each of the files File1a & File1b have 5 
CUs in each input sample (that is, 5 x 4 = 20 input 
neurons).  Thus File1a, for example, has 20 x 5,000 
= 100,000 elements in the training section and 20 x 
2000 = 40,000 elements in the test section. The 
same goes for File2a, File2b, File3a and File3b.  
The total number of elements for each input file is 
shown in Table 2. 

 
 File1a 

File1b 
File2a 
File2b 

File3a 
File3B 

Train 
Data 

100,000 120,000 140,000 

Test 
Data 

40,000 48,000 56,000 

Total 140,000 168,000 196,000 
 
Table 2: Number of Elements in the Test Files 
 

IV. Simulation Results and 
Performance Comparison 

 
Simulation results are summarized in table 3 

and table 4.  In these tables, topology specifies the 

neural network architecture.  For example, a 
topology of {20,10,1} indicates 20 input neurons, 
10 hidden neurons, and 1 output neuron.  The 
parameters α, µ, indicate the learning rate and the 
momentum constants of the gradient descent BP 
with momentum.  The quantity e is the mean of the 
square error (MSE) of the difference between the 
actual output y and the desired output d.  An epoch 
is one complete presentation of the training data.  
‘FalsePos’ and ‘FalseNeg’ are the false positive 
and false negative rates in classifying users.  A 
false positive is classifying an authorized user as an 
intruder; conversely, a false negative is classifying 
an intruder as an authorized user.  Each method 
terminates when any of the following condition 
occurs: (i) MSE = exp(-5), (ii) Epoch = 500, and 
(iii) when the gradient undergoes negligible change 
from one epoch to the next (i.e. typically exp(-10) 
in the simulation). 

 
Table 3 summarizes results obtained when the 

first data set was applied as input.  Since the 
gradient descent with momentum (GDM) method 
did not perform as well as the other two methods 
(CGP and BFGS), it was excluded from being used 
to test the second data set.  Table 4 summarizes 
results obtained when the second data set was used 
as input for the conjugate gradient and quasi 
Newton methods.  

 
 

 File 1a Input File 2a Input File 3a Input 
Topology 

{20,17,1} 

FalsePos = N/A Topology 

{24,14,1} 

FalsePos = 0 Topology 

{28,17,1} 

FalsePos = 0 

α = 0.1, µ = 0.75 False Neg =N/A α = 0.05, µ = 0.75 FalseNeg = 0 α = 0.05, µ = 0.70 FalseNeg = 75% 

 

GDM 

MSE = N/A 500 Epoch MSE = exp-5 140 Epoch MSE = 0.07 500 Epoch 

FalsePos  = 0 FalsePos = 0 FalsePos = 0 Topology 

{20,13,1} FalseNeg  = 0 

Topology 

{24,10,1} FalseNeg = 0 

Topology 

{28,13,1} FalseNeg = 0 

 

CGP 

MSE = exp-5 90 Epoch MSE = exp-5 50 Epoch MSE = exp-5 40 Epoch 

FalsePos = 0 FalsePos = 0 FalsePos = 0 Topology 

{20,13,1} FalseNeg = 0 

Topology 

{24,11,1} FalseNeg = 0 

Topology 

{28,11,1} FalseNeg = 0 

 

BFGS 

MSE = exp-5 45 Epoch MSE = exp-5 60 Epoch MSE = exp-5 40 Epoch 

Table 3: Summary of Simulation Results for the First Data Set 

 



 File 1b Input File 2b Input File 3b Input 
FalsePos = .04% FalsePos = 0.01% FalsePos = 0 Topology 

{20,15,1} FalseNeg = 15% 

Topology 

{24,14,1} FalseNeg = 17.5% 

Topology 

{28,16,1} FalseNeg=17.5% 

 

CGP 

MSE = 0.01 500 Epoch MSE = 0.17 500 Epoch MSE = 0.18 450 Epoch* 

FalsePos=0.15% FalsePos=0.15% FalsePos= 0.05% Topology 

{20,17,1} FalseNeg=12.5% 

Topology 

{24,15,1} FalseNeg = 5.0% 

Topology 

{28,16,1} FalseNeg=25.0% 

 

BFGS 

MSE = 0.01 500 Epoch MSE = 0.01  500 Epoch MSE 100 Epoch* 

Table 4: Summary of Simulation Results for the Second Data Set 
*NN method stops due to gradient too small 

 
In testing the following observations were 

made.  First, the gradient descent with momentum 
method did not perform well as the Conjugate 
Gradient and quasi Newton methods.  Furthermore, 
it was time consuming to tune the learning rate, 
α, and the momentum constant, µ, for this method 
to operate properly.  For instance, when the input 
was File1a, the GDM method was not able to 
classify the intrusion traffic from the authorized 
traffic, however it was able to do the classification 
correctly when the input file was File2a or File3a.  
When the input file was File2a, GDM requires 140 
epochs to converge compared to only 50 epochs for 
CGP and 60 epochs for BFGS.  When the input file 
was File3a, GDM needed 500 epochs to converge 
to a 75% false negative error compared to 40 
epochs and no false negative for both CGP and 
BFGS methods.  These results indicate that both 
the CGP and the BFGS methods were superior in 
classifying authorized users from intruders while 
maintaining good false negative values and good 
convergence properties compared to the GDM 
method. 

 
Second, the conjugate gradient and the quasi 

Newton methods exhibited roughly the same 
performance in terms of classification.  Both of 
these methods required simpler NN topology (i.e. 
NN topology with fewer hidden layer neurons) and 
fewer epochs to converge compared to the GDM 
method. 

 
Third, the number of CUs used in each input 

sample affected the performance of the 
classification of the data.  Of all the data sets used, 
File2a and File2b tended to yield the best 
performance for the three neural networks 
methods.  This leads one to believe that an input 
sample consisting of 5 CUs (20 elements) might 
not contain enough information, while 7 CUs (28 

elements) input sample might contain too much 
information, whereas 6 CUs (24 elements) input 
samples contains the right amount of information 
for classification of computer users.  This issue 
needs further study. 
 
 

V. Summary 
 

In this paper, the problem of intrusion detection 
is posed as a classification problem.  Three 
different BP neural network methods were applied 
to solve this problem.  For training and testing 
purposes, two synthetic test data sets were created.  
From the first test data set, it was shown that the 
three neural networks methods were capable of 
classifying authorized users from intruders.  The 
conjugate gradient and the quasi Newton methods 
yielded superior performance than the gradient 
descent with momentum method.  With the second 
test data set, the conjugate gradient and quasi 
Newton methods performed best when each input 
sample size is 6 CUs, or equivalently 24 elements 
long. 
 
 

VI. Conclusion and Future Work 
 

From the preliminary results shown in this 
paper it appears that neural network techniques 
hold some potential in intrusion detection.  The 
training data and test data used in this study were 
synthetically generated.  Using this generated data, 
it was shown that the conjugate gradient and the 
quasi Newton can successfully detect intruders 
logging into a computer network.   These two 
methods only required an input sample of 6 



consecutive CUs from the intruder to classify that 
the current user is indeed an intruder. 

 
Several issues remain to be investigated. First, 

it is necessary to evaluate the performance of 
neural networks with data sets captured by 
monitoring real traffic.  Second, it is also necessary 
to establish the feature set that best describes users 
and intruders. The three used in this paper, namely 
command set, login time, and CPU usage, were 
selected because they appeared to be reasonable 
choices after a cursory examination of a data set 
available at the Security Laboratory of the 
University of California at Davis. Third, it is 
necessary to characterize the drifting patterns 
among authorized users and develop an 
incremental training procedure.  Finally, besides 
the BP methods, there are other neural networks 
methods like the radial basis function (RBF) that 
could be implemented.  These issues are being 
addressed at this time. 
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